
Chapter 2

Related Work

In this section we will explain the SDN paradigm and how future networks may benefit
from this novel architecture. We give an overview on load balancing algorithms, and
conclude with a summary of the evaluation platforms that are used in our work.

2.1 Software-Defined Networking

Software-Defined Networking (SDN) [19, 27] is a new paradigm in networks. The main
idea of SDN consists in the centralization of network control in a logically centralized
program – the SDN controller – which controls and monitors the behavior of the network.
The goal is to separate the control plane from the data plane. This separation is possible
by means of an Application Programming Interface (API) between the switches and the
controller, such as OpenFlow [30]. Networks thus become programmable, allowing the
definition of the behavior of the entire network from the controller and the possibility to
create advanced network policies such as load balancing, routing and security.

Figure 2.1 illustrates the various layers that constitute an SDN. The first layer, called
application layer, consists of the applications that define the behavior of the network, com-
monly using the Representational State Transfer API [18]. This API uses the Hypertext
Transfer Protocol (HTTP) to allow remote applications to send instructions to the con-
troller or retrieve information from the controller. In the control layer we have a logically
centralized software-based SDN controller, responsible for handling the control plane and
maintain a global view of the network. This controller has the job of translating the appli-
cations instructions to the data layer by means of the OpenFlow API. It is also responsible
to give applications an up-to-date view of the network state. The data layer is composed
of the network devices responsible for packet forwarding, such as switches and routers.
The communication between the data layer and the control layer is made by OpenFlow.

7



8 Chapter 2. Related Work

Figure 2.1: Network design using SDN

2.1.1 OpenFlow

OpenFlow [30] is a protocol that enables the communication between the switches and the
SDN controller. OpenFlow started as a mechanism for researchers to realistically evaluate
their experiments, as it enables the separation of experimental traffic from production
traffic. This allows the use of a network switch for experiments without interfering with
normal traffic. OpenFlow allows the modification of the flow tables of the switches, using
a well-defined interface, by issuing commands from the controller. An OpenFlow-enabled
switch (OF switch) can match packets against the different headers which enable more
dynamic and flexible forwarding instructions than common network devices.

In Table 2.1 we illustrate a flow table that supports OpenFlow. The table shows the
flow rules used to evaluate what action the switch should take when a packet for that par-
ticular flow arrives. The first 5 columns represent the packet headers that can be matched
(this is what defines a flow). The column “Action” represents the action, defined by the
controller, that the switch must perform when it matches on that row. Finally the last
column represents the number of packets received by the switch that matched that flow.
For example, we can see that all packages with Transmission Control Protocol (TCP) des-
tination port 25 will be discarded and that the switch has already discarded 100 of those
packets. The unknown packets (all the first 5 columns have only an *) are forwarded to



Chapter 2. Related Work 9

the controller, which is the default behavior, the controller can then decide what action to
perform to those packets.

MAC src MAC dest IP src IP dest TCP dport Action Count

* 10:20:* * * * port 11 235

* * * 123.8.2.1 * port 2 300

* * * * 25 drop 100

* * * * * Controller 455

Table 2.1: Example of an OF-enabled switch flow table

2.2 SDN controllers

Controllers are the core component of an SDN. They oversee the behavior of the entire
network and implement the decisions to achieve the desired state for the network. They
are a logically centralized program that offers services and applications for controlling
the network. It is important to emphasize that a logically centralized program does not
mean that we have a centralized system. Actually, the controller can be distributed and
replicated for fault tolerance and/or better performance [26]. In any case, applications are
written as if the network view was stored on a single machine [21].

2.2.1 Nox

NOX [21] was the first SDN controller and was written in C++ and Python. As shown in
Figure 2.2, a NOX-based network consists of a set of switches and one server, running the
NOX controller software and the management applications over it. The NOX programing
model is event-driven, meaning that, the data plane triggers events, like a Packet In event,
and applications are notified of the event. NOX has core applications to discover and
observe the network components. These applications are responsible for creating and
updating a single database containing all network observations and data (network view),
providing observation granularity at the switch-level topology, showing the locations of
users, hosts, middleboxes, and other network elements [21]. Like any other centralized
controller, Nox has to handle all flows in the network making it a possible bottleneck.
Anyway this controller is able to handle around 100000 flows per second [21], which is
considered enough for a good range of networks [15].

2.2.2 Onix

Onix [26] is a distributed SDN control platform that runs on a cluster of one or more
physical servers, each of which may run multiple Onix instances. Onix uses a database



10 Chapter 2. Related Work

Figure 2.2: NOX-based network

called Network Information Base (NIB) that stores the current state of the network. The
state in the NIB is distributed and replicated among all Onix instances using basic state
distribution primitives. Onix also provides a general API which allows, depending on the
desired implementation, to make trade-offs among consistency, durability, and scalability.

Contrary to other controller designs, the NIB sits between the management plane and
the control plane, and it is through this database that the applications interact indirectly
with the data plane. The management plane modifies the NIB and the controller reads
those modifications and translates them in commands to the data plane. In the other
way around, the controller updates the NIB according to the events triggered by the data
plane, and notifies the applications about the updates made in the NIB. Every time a
NIB is modified, the NIBs of the other Onix instances must be updated, for the sake
of consistency. Onix provides the possibility of choosing between strong or eventual
consistency for this purpose. For strong consistency it offers a transactional persistent
database, and for eventual consistency it has a memory based Distributed Hash Table
(DHT) available.



Chapter 2. Related Work 11

2.2.3 Floodlight

Floodlight [8] is an enterprise-class, Apache-licensed, Java-based OpenFlow Controller.
This is the one we have chosen to use in our project because it is designed to offer high-
performance and scales well with the number of network components [8]. The fact that it
is implemented in Java also contributed to this decision.

The Floodlight controller is based on another controller called Beacon [17]. Java was
the chosen programming language because it offers the best balance between performance
and user friendliness. It is also portable, which means it can run on a variety of operative
systems. In addition, Beacon (and Floodlight) has a good and simple API and comes with
useful applications:

• Device manager: tracks devices seen in the network including information on their
addresses, last seen date, and the switch and port last seen on;

• Topology: discovers links between connected OpenFlow switches;

• Routing: provides shortest path layer-2 routing between devices in the network;

• Web: provides a Web user interface.

One advantage of Beacon and Floodlight is the runtime modularity, the capability of
not only starting and stoping applications while it is running, but to also add and remove
them, without shutting down the controller process. Applications are fully multithreaded
having blocking (Shared Queue) and non-blocking (Run-to-completion) algorithms for
reading OpenFlow Messages. The evaluation presented in [17] concluded that Beacon
was the controller with best performance when compared to NOX [21], Pox [5] and Mae-
stro [32].

2.3 Load Balancing

Web applications scale by running on multiple servers to be able to service an increasing
number of users that demand Web content. To achieve the desired performance, load
balancers are used to distribute the request by the replicas. This results in important
benefits such as scalability, availability, manageability, and security of Web sites [20].
The Load balancer job is to choose which server should handle the next request, using
algorithms such as Round-Robin. After receiving a request from the client, it applies the
load balancing algorithm and forwards the request to the chosen server.

Load Balancers today consist of expensive specialized hardware, the dispatcher, lo-
cated at the entrance of the network [37]. This dispatcher is a special component used
only for load balancing so it can handle many requests with good performance. The
dispatcher may become a bottleneck and it is therefore necessary to replicate the load


	List of Figures
	List of Tables
	Introduction
	Traditional Networks
	Software Defined Network, a new paradigm
	Motivation
	Contributions
	Work Plan
	Document Structure

	Related Work
	Software-Defined Networking
	OpenFlow

	SDN controllers
	Nox
	Onix
	Floodlight

	Load Balancing
	Content-blind load balancing
	Content-aware load balancing
	Plug-n-Serve: An SDN Load Balancer

	Evaluation
	Mininet
	Mininet Hi-Fi
	GENI


	Design and Implementation
	Application Design
	MALOB
	Implementation
	Maintaining Network State
	Maintaining Server State
	Load Balancing Algorithms


	Evaluation
	Topology and Testbed Setup
	Evaluation Results
	HTTP Requests
	FTP Requests
	Bio Application Requests
	Discussion


	Conclusion
	Acronyms
	Bibliography

